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Results are presented of numerical simulations of passive scalar mixing in homo- 
geneous, incompressible turbulent flows. These results are generated via the Linear 
Eddy Model (LEM) and Direct Numerical Simulation (DNS) of turbulent flows 
under a variety of different conditions. The nature of mixing and its response to the 
turbulence field is examined and the single-point probability density function (p.d.f.) 
of the scalar amplitude and the p.d.f.s of the scalar spatial-derivatives are constructed. 
It is shown that both Gaussian and exponential scalar p.d.f.s emerge depending on 
the parameters of the simulations and the initial conditions of the scalar field. Aided 
by the analyses of data, several reasons are identified for the non-Gaussian behaviour 
of the scalar amplitude. In particular, two mechanisms are identified for causing 
exponential p.d.f.s: (i) a non-uniform action of advection on the large and the small 
scalar scales, (ii) the nonlinear interaction of the scalar and the velocity fluctuations 
at small scales. In the absence of a constant non-zero mean scalar gradient, the 
behaviour of the scalar p.d.f. is very sensitive to the initial conditions. In the presence 
of this gradient, an exponential p.d.f. is not sustained regardless of initial conditions. 
The numerical results pertaining to the small-scale intermittency (non-Gaussian scalar 
derivatives) are in accord with laboratory experimental results. The statistics of the 
scalar derivatives and those of the velocity-scalar fluctuations are also in accord with 
laboratory measured results. 

1. Introduction 
It has been more than four decades since Hawthorne, Weddell & Hottel (1949) 

indicated the advantages of the probability density function (p.d.f.) method for sta- 
tistical description of reacting turbulent flows. Since then, p.d.f. methods have been 
used rather extensively as witnessed by many review articles devoted to the topic 
(Toor 1975; Pope 1979; Libby & Williams 1980, 1994; O’Brien 1980; Pope 1985, 
1990); for the latest review, see Dopazo (1994). The systematic means of determining 
the p.d.f. involves the solution of the transport equation governing its evolution. In 
this equation, however, the effects of molecular action do not appear in a closed 
form and can be described only by means of employing an external model. In many 
of the previous applications, this problem has been overcome through the use of 
the Coalescence/Dispersion (C/D) models. Examples are the early C/D prototype 
of Curl (1963), the Linear Mean Square Estimation (LMSE) theory of Dopazo & 
O’Brien (1976), and the closure of Janicka, Kolbe & Kollmann (1979) amongst others. 
While not all of these closures were originally presented in a C/D form, it is now 
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established that the majority of those in current use (including the three mentioned 
above) can be cast in a generalized C/D mould (Pope 1982; McMurtry & Givi 1989). 

None of the C/D closures currently in use are regarded as physically plausible 
- the primary reason being that they are not capable of producing an asymptotic 
‘Gaussian’ p.d.f. for a scalar field in homogeneous turbulent flows. Such a Gaussian 
asymptotic state has been observed in several laboratory (Miyawaki, Tsujikawa & 
Uraguchi 1974; Tavoularis & Corrsin 1981a) and direct numerical simulation (DNS) 
(Givi & McMurtry 1988; Eswaran & Pope 1988; McMurtry & Givi 1989) results; see 
Givi (1989) for a review. This ‘incapability’ of the C/D models has been a driving 
force for the development of other mixing closures capable of generating Gaussian 
statistics. Examples are the age-biasing scheme of Pope (1982), the Amplitude Map- 
ping Closure (AMC) of Kraichnan (1989) and Chen, Chen & Kraichnan (1989) and 
the Johnson-Edgeworth Translation (JET) of Miller et al. (1993). These models ex- 
hibit one common feature : They all yield an approximate asymptotic Gaussian scalar 
p.d.f. in homogeneous turbulent flows. 

The results of some of the more recent laboratory and numerical experiments, 
however, indicate the possibility of distributions other than Gaussian. The measure- 
ments of Heslot, Castaing & Libchaber (1987), Castaing et al. (1989) and Sano, 
Wu & Libchaber (1989) (known as the Chicago group) show that the temperature 
fluctuations in the convective core of a Rayleigh-Bkrnard cell are Gaussian when the 
Rayleigh number (Ra) is less than a critical value, but become ‘exponential’ when 
the magnitude of Ra exceeds the critical value. The results of numerical simulations 
(Christie & Domaradzki 1993, 1994) and laboratory experiments (Solomon and Gol- 
lub 1991) suggest that in addition to the Rayleigh number, the geometry of the cell 
and the magnitude of the Prandtl number also affect the statistics. Solomon (1990) 
shows that the temperature p.d.f. can be either Gaussian, exponential or a combi- 
nation of the two throughout the convected core. Thoroddsen & Van Atta (1992) 
show that while the scalar derivative exhibits a strong exponential feature in stably 
stratified flows, the temperature fluctuations are governed by Gaussian statistics. The 
experiments of Jayesh & Warhaft (1991, 1992) reveal several characteristics of the 
p.d.f. of a passive temperature field in decaying homogeneous grid turbulence. For 
turbulent Reynolds numbers (based on the integral scale) Re[ > 70 they show that 
in the presence of a constant (non-zero) mean scalar gradient, the temperature p.d.f. 
is exponential, while for Re[ c 70 an approximate Gaussian p.d.f. is formed. These 
results are not in accord with those of earlier measurements of Tavoularis & Corrsin 
(1981~) who report a Gaussian scalar p.d.f. in the presence of a linear mean scalar 
profile in homogeneous shear flows for Reynolds numbers greater than 70. In the ab- 
sence of the mean scalar gradient, Jayesh & Warhaft (1992) report a nearly Gaussian 
temperature p.d.f. regardless of the magnitude of the Reynolds number. Exponential 
scalar p.d.f.s are also reported in the experiments of Gollub et al. (1991) and Lane et 
al. (1993) conducted in a stirred flow with a constant mean scalar gradient and a near 
Gaussian velocity field. It is indicated, however, that by increasing the correlation 
length scale of the velocity field, the scalar statistics become Gaussian even at very 
large Reynolds numbers. 

These recent experimental findings have motivated several analytical and computa- 
tional investigations for the purpose of understanding the reasons for non-Gaussian 
scalar statistics. In an effort to explain the Chicago experiments, Yakhot (1989) modi- 
fied an existing theory of passive scalar p.d.f.s (Sinai & Yakhot 1989) for the problem 
of Rayleigh-Bernard convection. This formulation is based on the argument that 
the large-scale coherent vortex structures influence the hydrodynamic stability of the 
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thermal boundary layer, thus modifying the mechanism of turbulence production. 
Kimura & Kraichnan (1993) show that a nonlinear mean scalar profile and/or an 
‘active’ scalar field can cause non-Gaussian statistics. The generated results for cases 
with a nonlinear mean scalar profile exhibit trends qualitatively similar to those in 
the Boussinesq convection experiments (Belmonte, Tilgner & Libchaber 1994; Siggia 
1994). Pumir, Shraiman & Siggia (1991) and Holzer & Pumir (1993) propose a one- 
dimensional ‘mean-field’ phenomenological model based on which they argue that in 
the presence of a constant mean scalar gradient, non-Gaussian statistics emerge as 
an inherent property of random advection. Kerstein & McMurtry (1994b) argue that 
the exponential tails deduced from the mean-field theory are primarily due to the 
functional form of the advection process which is enacted by an ‘additivity’ assump- 
tion. They show that depending on the statistics of the advection field, a wide variety 
of scalar p.d.f.s (including Gaussian) can be generated. Using a two-dimensional 
model in which the velocity evolves under the Euler equation in a restricted band of 
wavenumbers, Holzer & Siggia (1994) show that exponential-like scalar p.d.f.s occur 
when the magnitude of the scalar dissipation is non-zero. Ching & Tu (1994) report 
results of two-dimensional simulations of a passive scalar advected by a solenoidal 
velocity field. Depending on the parameterization of the problem, the scalar p.d.f. 
may become non-Gaussian, even without the presence of the mean scalar gradient. 
Similar p.d.f.s are also observed in the large-eddy simulation results of Metais & 
Lesieur (1992). These observations indicate the need for more improved models for 
prediction of the scalar p.d.f. under different mixing scenarios (Jaberi & Givi 1995). 

The phenomenon of small-scale ‘intermittency’, portrayed by non-Gaussian statis- 
tics of the derivative-field, has been the subject of widespread investigations in turbu- 
lence research since the original theory of Kolmogorov (1941). Although this theory 
remains the basis of nearly all turbulence research, it is an incomplete description of 
realistic turbulent flow in that it does not describe intermittency effects (Landau & 
Lifshitz 1959; Obukhov 1962; Kolmogorov 1962; Gurvich & Yaglom 1967; Monin 
& Yaglom 1975). Early experiments reveal that although the p.d.f. of the velocity 
field is Gaussian, the p.d.f. of velocity derivatives exhibit larger than Gaussian tails 
with departures increasing with the Reynolds number (Batchelor & Townsend 1949; 
Monin & Yaglom 1975; Yamamoto & Kambe 1991). These intermittent p.d.f.s are 
observed even for very low Reynolds number flows (Chen et al. 1993) and may occur 
in both the dissipation range and/or the inertial range of turbulence. The former is 
associated with non-Gaussian velocity derivatives. The latter is identified through the 
statistics of the two-point velocity difference (structure function) for inertial range 
separations and yields corrections to the -5/3 Kolmogorov energy spectrum scaling 
(Van Atta & Antonia 1980; Anselmet et al. 1984; Castaing, Gague & Hopfinger 1990; 
Vincent & Meneguzzi 1991). 

The results of recent DNS experiments suggest that the regions of strongest 
vorticity are organized in elongated thin tubes, with thickness and length on the order 
of the Kolmogorov scale and the integral scale, respectively (Kerr 1985; Hosokawa 
& Yamamoto 1989; Vincent & Meneguzzi 1991; Tanaka & Kida 1993). Jimenez et 
al. (1993) observe that these tubes are a natural feature of turbulence, and do not 
depend on the particular forcing scheme employed. She (1990) and She & Orszag 
(1991) develop a ‘two-fluid’ model of intermittency which incorporates the existence 
of these organized structures. This model is capable of capturing the statistical 
behaviour of both the inertial- and the dissipation-range intermittency (She, Jackson 
& Orszag 1991). Most investigations of turbulent scalar mixing are for flows with 
Schmidt numbers of order unity (Sc  N 1) for which the scalar spectral regimes 
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are analogous to those of the velocity field?. In this case, the application of the 
Kolmogorov (1941) description to the scalar is also inadequate due to an inability to 
account for intermittency. In particular, while the scalar fluctuations typically portray 
Gaussian statistics (Antonia & Van Atta 1978; Givi & McMurtry 1988; Eswaran & 
Pope 1988; McMurtry & Givi 1989), scalar derivatives and differences are known to 
exhibit larger tails with stronger departures than observed in the velocity statistics 
(Van Atta & Chen 1970; Antonia et al. 1984; Castaing et al. 1990; Miller et al. 
1995). As with the hydrodynamics, the scalar field is known to be dominated by 
organized structures characterized by regions of strong scalar-derivative magnitude. 
Ruetsch & Maxey (1991 & 1992) show that regions of large scalar gradients form 
‘sheet-like’ structures which are found to occur in regions of persistent straining of 
the flow field. It has also been shown (Kerr 1985; Ashurst, Chen & Rogers 1987a; 
Ashurst et al. 1987b; Nomura & Elghobashi 1992; Miller 1995) that the scalar 
gradient vector tends to align parallel to both the pressure gradient and the most 
compressive eigenvector of the strain-rate tensor in these regions. Miller et al. (1995) 
extend the two-fluid description of She (1990) to account for the role of scalar sheets 
in the dissipation-range scalar intermittency. While the results obtained in this way 
portray some features of small-scale scalar intermittency, the phenomenon of the 
non-Gaussian scalar-amplitude p.d.f. remains an unresolved issue. 

1.1. Objective 
The objective of this work is to demonstrate that there are several factors which 
determine the outcome of scalar mixing in homogeneous turbulent flows. The message 
to be conveyed is to confirm that the p.d.f. of the scalar can adopt many different forms 
and that the Gaussian form as indicated by Givi & McMurtry (1988), Eswaran & 
Pope (1988) and McMurtry & Givi (1989) is only one of the many possible outcomes. 
In doing so, the phenomenon of scalar mixing is numerically simulated with the goal 
of identifying some of the means by which non-Gaussian statistics are generated. The 
hope is to provide the reasons for these statistics as observed in recent laboratory 
and numerical experiments. The analysis is based on two computational procedures: 
(i) the mechanistic Linear Eddy Model (LEM) of Kerstein (1988), and (ii) DNS. The 
reasoning for the use of the LEM is its relative low computational cost, allowing a 
large number of simulations. It also provides a means of simulating high Reynolds 
number flows, albeit in a phenomenological manner. In the context considered, as 
will be described in the next section, LEM simulations reveal many features of scalar 
mixing which, in turn, identify several cases to be considered subsequently by DNS. 
In both simulations, only the transport of a passive and conserved scalar variable is 
considered; the analyses pertaining to dynamically active and/or chemically reactive 
scalars are postponed for future work. 

2. Linear eddy model simulation 
Details of the LEM and its application in modelling of turbulent mixing and 

chemical reaction are described in several papers by Kerstein (1988, 1989, 1990, 
1991); for a recent review see McMurtry, Menon & Kerstein (1993b). The prominent 
feature of the model in applications to turbulence simulations is its capacity to 
explicitly differentiate among the different physical processes of turbulent stirring 

t Not including the extensive literature of chemical engineering devoted to liquid scalar mixing 
(Brodkey 1975), since small-scale intermittency is not discussed in this literature. 
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(convection) and molecular diffusion (and chemical reaction). This is achieved by 
a reduced ‘one-dimensional’ (linear) description of the scalar field which allows 
the resolution of all length scales even for flows with relatively large Reynolds 
numbers. The physical interpretation of the one-dimensional domain is dependent on 
the particular case under consideration (Kerstein 1992). Along the one-dimensional 
domain, the diffusion process is implemented deterministically by the solution of the 
appropriate diffusion equation. The manner by which turbulent convection is treated 
constitutes the primary feature of the model. This process is modelled by random 
‘rearrangement’ (stirring) events of the scalar field along the domain. The rules by 
which these rearrangement processes occur are established such that the random 
displacements of fluid elements result in a diffusivity that is equal to the ‘turbulent 
diffusivity’ of the flow. The parameters which govern this process are I ,  the frequency 
of stirring, and f(e), the p.d.f. of eddy size (e) of the segments of the flow which 
are to be rearranged. To determine explicit expressions for the size and frequency of 
rearrangement events, a particular rearrangement mapping must be chosen. Kerstein 
(1991) shows that the triplet map reflects several physical features which suggest its 
choice for high Reynolds number turbulence simulations. The stirring events induced 
by this mapping introduce a random walk of a marker particle on the linear domain. 
Based on high Reynolds number scaling laws, the diffusivity induced by all eddies 
up to some size 1 is assumed to scale as D T ( ~ )  - 1P.  The parameter p takes on the 
value 4/3 for inertial-range turbulence, but can be treated as a variable to study 
other assumed scalings. Based on these scaling arguments, it can be shown that the 
following relations must be satisfied (Kerstein 1991): 

C u--813 

513 I = - - ( $ )  54 1 . 
5 LUTL 

Here, zL is the eddy turnover time, L, is the integral scale and r is the Kolmogorov 
length scale. In this representation, the statistics of the velocity field are inputs to 
the model. The required model parameters which describe the turbulent field include 
the turbulent diffusivity ( D T ) ,  the integral velocity length scale (L,), the Reynolds 
number (Re)  and the Schmidt number (Sc). The relation between the model DT and 
turbulent diffusivity is needed to relate the computational time to the physical time. 
The parameter L, is defined as the largest allowable eddy for a given flow, and 1 
represents the size of a ‘typical’ eddy. The LEM analogue of the Reynolds number 
is defined by Re = ( L , / v ) ~ / ~ .  Equations (1) and (2) are based on scaling relations for 
high Reynolds number flows (Tennekes & Lumley 1972) and therefore the results are 
most applicable under this condition. 

In the implementation of the model for the simulation of a three-dimensional 
homogeneous turbulent flow, the linear dimension is interpreted to be the time- 
varying space curve which is locally aligned with the prominent direction of the 
scalar gradient (Kerstein 1991). In the implementation of the triplet mapping (or any 
other mapping procedures), however, one must be careful about the magnitudes of 
the length scales involved in the simulations. For example, if the size of the whole 
computational domain (LB) is small, the statistics are dependent on the mapping 
procedure. Moreover, the number of grid points employed for numerical discretization 
must be large enough to resolve the Kolmogorov scale sufficiently. Finally, the 
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Case Initial condition for the scalar field L, Re S c  
LEM-1 Square wave, Lg = 1 1 90 0.7 
LEM-2 Square wave, Lg = 2 1 90 0.7 
LEM-3 Double square wave, Lg = 1,2 1 90 0.7 
LEM-4 Square wave, Lg = 1 3 90 0.7 
LEM-5 Square wave, Lg = 2 3 90 0.7 
LEM-6 Double square wave, Lg = 1,2 3 90 0.7 
LEM-7 Gaussian spectrum, K ,  = 2 1 90 0.7 
LEM-8 Gaussian spectrum, K ,  = 3 1 90 0.7 
LEM-9 Gaussian spectrum, K ,  = 8 1 90 0.7 
LEM-10 Gaussian spectrum, K ,  = 3 2 90 0.7 
LEM-11 Top-hat spectrum, K ,  = 2 1 90 0.7 
LEM-12 Top-hat spectrum, K ,  = 3 1 90 0.7 
LEM-13 Top-hat spectrum, K ,  = 8 1 90 0.7 
LEM-14 Double top-hat spectrum, K,I = 2,Ks2 = 12 1 90 0.7 
LEM-15 Double top-hat spectrum, K,I = 8,Ks2 = 12 1 90 0.7 
LEM-16 Double top-hat spectrum, K,I = 2, K,z = 12 2 90 0.7 
LEM-17 Gaussian spectrum, K ,  = 20 1 90 0.7 
LEM-18 Gaussian spectrum, K ,  = 30 1 90 0.7 
LEM-19 Double square wave, Lg = 1, 2 1 50 0.7 
LEM-20 Double square wave, Lg = 5, 10 5 900 0.7 
LEM-21 Double square wave, Lg = 1, 2 1 90 0.05 
LEM-22 Double square wave, Lg = 1, 2 3 90 0.05 

TABLE 1. Conditions for the LEM simulations. For the cases denoted ‘square wave’, the initial scalar 
p.d.f. is an approximate double-delta function (equation (3)). For all the other cases, the initial 
p.d.f. is approximately Gaussian. In all the cases, Lg = 1 corresponds to 200 grid points. K ,  = 1 
corresponds to 1000 grid points. L, = 1 corresponds to 200 grid points. 

accuracy of the flow statistics is dependent on the number of grid points and the 
number of realizations employed for data sampling. 

LEM results 
The resolution requirement for the LEM simulations depends on the magnitudes of 
the model Reynolds number and the Schmidt number. As we shall see in the simulated 
results here, the outcome of mixing is strongly dependent on the length scales of the 
velocity and the scalar field. All the simulations are conducted within relatively large 
box sizes; typically, N ,  = LB/L,  = 0(100), where N ,  denotes the number of ‘cells’ 
within the box. The number of grid points within each cell is determined in such a way 
to resolve the Kolmogorov length scale. McMurtry et al. (1993~) suggest that NN 6 grid 
points provide the sufficient resolution. For example, with L, = 1 and Re = 90, with 
200 grid points within each cell the desired accuracy is achieved. With this, there would 
be a total of N = 200 x N ,  grid points within the whole domain. In addition, each sim- 
ulation is repeated N ,  times; thus the total number of samples for statistical analysis 
is N ,  x N .  In most of the simulations, N,  = 200 is used. Simulations with smaller box 
sizes consisting of N ,  = 100 cells yield almost identical results. In almost all the cases, 
the simulations are repeated N,  = 100 times. Therefore, the statistical information is 
gathered from 4 x lo6 samples. The computer time to gather this many samples for 
Re = 90 simulations is about one hour on the Cray-YMP computer. While this is 
substantially less than that required for typical DNS (Givi 1994), it is not insignificant. 
Therefore, in some cases the magnitude of N ,  was decreased but it was never less than 
10. In order to mimic different mixing scenarios, a variety of different initial scalar 
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FIGURE 1. Initial distribution of the scalar for some of the LEM cases within a domain consisting 

of 800 grid points. 

conditions are considered. All the cases considered are listed in table 1 and will be 
described in detail below. In all these cases, a stationary (non-decaying) hydrodynamic 
field is considered and its influence is modelled by the triplet mapping. The scalar 
field in all the cases is decaying. In addition to the initial distributions of the scalar 
field, the difference between the cases is due to the magnitudes of the hydrodynamic 
and the scalar length scales, the Schmidt number and the Reynolds number. 

An objective of these LEM simulations (and also the DNS to be discussed in the 
next section) is to determine the time-evolution of the scalar statistics. There is no 
rigorous mathematical definition of the asymptotic time denoting the ‘final’ stage(s) 
of mixing (Kerstein & McMurtry 1994~). As mixing proceeds, the p.d.f. of the scalar 
field tends to form a delta function in the composition domain centred at the average 
value of the scalar, i.e. P ( 4 )  + i5(4 - (4)); (4) denotes the ensemble-average value 
of the scalar variable 4 with p.d.f. P ( 4 ) .  At large times, the magnitude of the scalar 
variance o2 is significantly reduced (02 + 0 for a decaying scalar field) and the values 
of all constituents of the statistical ensemble are close to the mean scalar value. Here, 
the simulations are continued until the scalar variance decays to at least O(lOP3) of 
its initial value. 

In the first set of simulations (LEM-1-LEM-3) the mixing progression from an 
initial condition corresponding to two scalar ‘slabs’ with alternating values of 4 = +1 
is considered. With this, the initial p.d.f. is composed of two delta functions: 

P ( 4 ,  t = 0) = ;a(+ - 1) + ;a(+ + 1). (3) 

In LEM-1 and LEM-2, the initial field is composed of a ‘square wave’, with wave- 
lengths L4 = 1 and L, = 2, respectively. In LEM-3, the initial field is composed of a 
‘double square wave’ with L, = 1, 2. In all three cases, L, = 1. Figure 1 shows the 
double square wave distribution within a supercell as produced in LEM-3. The single 
square wave distribution, as used in LEM-1, is the same as that shown within the first 
400 grids on this figure and is repeated throughout the domain. Cases LEM-4-LEM-6 
employ the same scalar initializations as in LEM-1-LEM-3, respectively, but with 
L, = 3. 
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The temporal variations of the scalar kurtosis, ,4 (,urn = ( & m ) / ( ~ 2 ) m / 2 ,  the prime 
denoting the deviation from the mean), in LEM-1-LEM-6 are shown in figure 2. A 
unit of time in these and all the subsequent figures pertaining to LEM simulations 
corresponds to one eddy turnover time, i.e. tL = ~ / z L .  Figure 2(a) shows that in LEM- 
1 and LEM-2, after t~ = 0.6, the p.d.f.s adopt an approximate Gaussian distribution 
whereas in LEM-3 the p.d.f. exhibits tails broader than Gaussian. By increasing the 
hydrodynamic length scale (figure 2b) the behaviour in LEM-4 and LEM-5 show a 
similar trend. However, in LEM-6 the departure from Gaussian is significantly less 
than that in LEM-3. The p.d.f.s at tL = 2 for these six cases are shown in figure 
3, and the temporal variations of the correlation between the scalar and its rate of 
dissipation (€4); defined by 

W 2 € 4 )  - 1  
(V2) (€4) 

P ( t )  = (4) 

are shown in figure 4. For a Gaussian distribution, 4 and C= are statistically independent 
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FIGURE 3. LEM-generated p.d.f.s of scalar at t L  = 2. LEM-1-LEM-6 as figure 2. 

( p  = 0). Thus, the numerical values of p at large times provide an accurate measure 
of the deviation of the p.d.f. from Gaussian as observed in figure 3. 

Figures 2-4 illustrate one reason for the non-Gaussian behaviour of the scalar p.d.f.. 
In all the cases with a single value for L4 the p.d.f. is Gaussian after t L  = 0.6 regardless 
of the magnitude of L,. In these cases, the influence of the hydrodynamic field as mim- 
icked by the LEM is similar on all scalar blobs. Thus, the larger slabs of the scalar are 
broken as a result of triplet mapping, and mixing is completed by diffusion at small 
scales. The breakage of the scalar blobs is statistically the same in all the slabs even 
though the rate is different depending on the magnitude of L4. In this way, the mixing 
behaviour is similar to that in the laboratory experiments of Miyawaki et al. (1974) 
and Tavoularis & Corrsin ( 1 9 8 1 ~ )  which do in fact suggest Gaussian p.d.f.s. The 
behaviour in LEM-3 is markedly different, primarily due to a 'non-uniform' influence 
of the hydrodynamic field. In this case with L, = 1, the effect of stirring is more dom- 
inant in the slabs with L4 = 1 than those with L4 = 2. This means that the molecular 
mixing acts at different time levels for different L4 values. Thus, the 'local' influence of 
mixing is not the same in square waves with different wavelengths. Consequently, at 
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FIGURE 4. Temporal variation of LEM-generated p. LEM-1-LEM-6 as figure 2. 

intermediate times the scalar fields are composed of 'two fields' whose combined 
weighted effects yield non-Gaussian statistics even if each of the two original fields are 
Gaussian. Although it is expected that a Gaussian p.d.f. would emerge if the compu- 
tations are continued until very long times, the non-Gaussian behaviour does prevail 
for a long time. In this regard, it is important to indicate that at t L  = 1 the magnitude 
of the variance in LEM-3 (a2 = 5.74 x is smaller than that in LEM-2 (a2 = 
5.96 x lop4). But the p.d.f. in LEM-2 is Gaussian and that in LEM-3 is exponential. 

By increasing the magnitude of the velocity length scale L, = 3, the departure from 
Gaussian becomes less significant. In this case (LEM-6), the influence of stirring is 
relatively more uniform (as compared with that in LEM-3) in all the scalar blobs. The 
reason is that now large scalar slabs rapidly follow the turbulence cascade (enacted 
by the triplet mapping) and the initial field is stirred uniformly before the molecular 
diffusion can significantly influence the p.d.f.. Thus, after the formation of exponential 
p.d.f.s at intermediate times, the p.d.f. at long times becomes closer to Gaussian. With 
the argument presented above it is plausible to expect the p.d.f. at long times in 
LEM-6 to be somewhere between those in LEM-3 and LEM-1. 
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It would be interesting to examine the evolution of the mixing from an initial 
Gaussian state. This is done in LEM-7-LEM-18. In these cases, the initialization 
procedure is similar to that used in the DNS of Eswaran & Pope (1988). It involves 
the specification of the scalar power spectrum with random magnitudes of the phase 
angles. This spectrum is specified within a subdomain (supercell) composed of lo00 
grid points and the initial scalar field in each of the supercells is similar. For a box 
with 40 000 grids, there are 40 supercells each composed of 5 cells. The corresponding 
Fourier wavenumbers within each of the subdomains is between -500 < K < 500. 
The energy is distributed at low wavenumbers with the following functional forms: 
(i) a Gaussian spectrum with a peak at K,: 

Eb(K,t = 0)  = - 

(ii) a top-hat spectrum centered at K, with a width AK = i, 
1 i fK , -AK<K<K,+AK 
0 elsewhere; 

( 5 )  

(iii) a double-hat spectrum with peaks centered at Ksl, Ks2 with a width AK = i, 
(7) 

1 i f K , ~ - A K < K < K , l + A K  o r K s 2 - A K < K < K s 2 + A K  
EdK’ = { 0 elsewhere. 

The Gaussian spectrum with K, 2 3 generates a multi-scale initial scalar field, whereas 
the top-hat spectrum yields an approximate single length scale. Figure 1 provides a 
typical graphical visualization of the initial scalar distribution within a supercell as 
produced in LEM-7-LEM-9. 

With an initial Gaussian scalar field, the combined influences of advection and 
diffusion can yield non-Gaussian scalar p.d.f.s (Kimura & Kraichnan 1993). This 
issue is considered here where the role of several parameters in causing exponential 
p.d.f.s is discussed. In figure 5 results are presented of the temporal variations of 
the kurtosis for LEM-7-LEM-10 with initial Gaussian scalar fields. In LEM-7 with 
K, = 2 the scalar field is primarily composed of large uniform size slabs. Therefore all 
the slabs are broken into smaller ones almost simultaneously. As a result, the kurtosis 
increases slowly then returns to the Gaussian value of 3. By distributing the initial 
energy around K, = 3 (LEM-8), a wider range of the initial scalar length scales are 
produced with some of the scalar slabs larger than L,. The evolution of the scalar 
kurtosis in this case portrays a roughly similar trend as that in LEM-3 (or LEM-6). 
The initial degree of segregation is, however, different. In LEM-8 the p.d.f. becomes 
exponential with tails broader than Gaussian even at very long times. An increase to 
K, = 8 (LEM-9) does not necessarily enhance the behaviour. Although in this case 
the initial scalar field is composed of blobs with multiple length scales, most of the 
length scales are smaller than L,. Thus the ‘flapping’ induced by the velocity field is 
dominant only at initial times when the kurtosis is slightly increased before the p.d.f. 
returns to the Gaussian state. A similar behaviour is observed for K, = 3 with L, = 2 

A similar qualitative kurtosis evolution is observed for the cases with the initial 
top-hat spectrum (LEM-11-LEM-13) as shown in figure 6. However, in none of 
these cases do exponential p.d.f.s persist. This is due to the relative uniformity of the 
initial length scale distribution of the scalar. Thus the behaviour in all these cases 
is similar to those with a square wave distribution (e.g. LEM-1, LEM-2). However, 

(LEM-10). 
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FIGURE 5. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized with 
a Gaussian spectrum: LEM-7 (K ,  = 2, L, = l), LEM-8 (K ,  = 3, L, = l), LEM-9 (K,  = 8, L, = l), 
LEM-10 (K,? = 3, L, = 2), 

when a double-hat spectrum is employed (LEM-14), a somewhat more profound 
non-Gaussian p.d.f. is observed. In this case, with K,I = 2,Ks2 = 12 the behaviour 
is similar to that in LEM-3 in which the approximate double length scale in the 
initial scalar field with L, = 1 causes a persistent exponential p.d.f.. The increase of 
K,1 to 8 (LEM-15) or the increase of L, to 2 (LEM-16) results in p.d.f.s closer to 
Gaussian. The reason for this behaviour is made clear by realizing that the conditions 
in LEM-15 and LEM-16 are 'effectively' similar to those in LEM-9 and LEM-10, 
respectively. 

Another means of producing non-Gaussian behaviour is through the simultaneous 
interaction of velocity and scalar fluctuations at small scales. This issue will be 
discussed further in the next section where the DNS-generated results are discussed. At 
this point it suffices to present the results for LEM-17 and LEM-18. These correspond 
to mixing with an initial Gaussian spectrum but with K ,  = 20,30, respectively. In 
figure 7 the kurtosis evolutions for these cases are compared with that of LEM-9. 
This comparison indicates that by increasing the relative weight of the small scales 
the p.d.f.s develop flatter tails at early times. At long times, the kurtosis in LEM-17 
( K ,  = 20) is smaller than that in LEM-9. This is in accord with the trend shown 
in figure 5 for LEM-8 and LEM-9 which suggests that as K ,  becomes larger the 
statistical behaviour becomes closer to Gaussian. However, by increasing K ,  further 
to the value of 30, an increase in the kurtosis value is observed. Note that in this 
case, the initial length scale of the scalar field is much smaller than L,. The triplet 
mapping implements velocity scales in the range y~ < 1 6 L,. The interactions of small 
scalar length scales with the velocity at small 1 values yield an overall non-Gaussian 
behaviour. It is noted that the departure from Gaussian as generated by the second 
mechanism is not very strong at long times. 

Based on the results presented thus far, two scenarios are identified for causing 
non-Gaussian flat-tail scalar p.d.f.s. (i) When there is a separation of length scales in 
the initial condition of the scalar, and the dominant scale of advection is less than 
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FIGURE 6. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized with 
a top-hat or a double-hat spectrum: LEM-11 ( K ,  = 2, L, = l), LEM-12 ( K ,  = 3, L, = l), LEM-13 
( K ,  = 8, L, = l), LEM-14 (KS1 = 2, Ks2 = 12, L, = l), LEM-15 (K,1 = 8, Ks2 = 12, L, = l), 
LEM-16 (K,, = 2, K,z = 12, L, = 2), 
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FIGURE 7. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized 
with a Gaussian spectrum: LEM-9 ( K ,  = 8, L, = l), LEM-17 ( K ,  = 20, L, = l),  LEM-18 
( K ,  = 30, L, = 1). 

that of the scalar: in this case, the simultaneous action of advection and molecular 
diffusion causes the scalar to develop a non-Gaussian flat-tail p.d.f.. (ii) When there 
is an increase of the initial weight of small scales: in this case, the decrease in the 
magnitude of the scalar gradient occurs faster by the action of molecular diffusion. 
While the advection tends to drive the scalar-gradient p.d.f. toward a non-Gaussian 
form, molecular diffusion acts to return it to Gaussian. With a combination of these 
two effects, the scalar tends to be correlated with its gradient, thus a non-Gaussian 
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FIGURE 8. Temporal variation of the LEM-generated scalar superskewness. The scalar field is 
initialized in the physical domain as double square waves: LEM-3 (Re = 90, Sc = 0.7), LEM-6 
(Re = 90, Sc = 0.7), LEM-19 (Re = 50, Sc = 0.7), LEM-20 (Re = 900, Sc = 0.7), LEM-21 
(L,  = 1, Re = 90, Sc = 0.05), LEM-22 (L,  = 3, Re = 90, Sc = 0.05). 

(usually flatter tail) p.d.f. develops. Note that the mechanism responsible for this 
non-Gaussian behaviour always exists. But when the initial weight of the small scales 
is large, the effects are more pronounced and are more clearly exhibited. In the 
cases considered here, the nowGaussian behaviour generated by the first mechanism 
appears much stronger than that caused by the second route (compare, for example, 
LEM-18 with LEM-3). 

At this point it is instructive to examine the influence of the model Reynolds 
number and the molecular Schmidt number on the outcome of mixing. While a 
thorough parametric study is not intended, cases LEM-19-LEM-22 provide some 
useful insight. In figure 8 results are presented of the temporal evolution of the 
scalar superskewness for the field initialized the same as in LEM-3 but with different 
values of the Reynolds and the Schmidt numbers. This figure shows that the overall 
influence of Re is not significant. This is to be expected, as in the context of the LEM 
the primary influence of the Reynolds number is on the variation of the velocity 
length scales participating in the rearrangement event. The influence of Sc  is more 
intriguing. Figure 8 indicates that for the initial field composed of a double square 
wave with L, = 1, a decrease in Sc  yields a more pronounced exponential p.d.f. at 
long times, but it does not yield a noticeable influence when L, = 3. The enhanced 
non-Gaussian behaviour at lower Sc values is not in accord with the expectation that 
the intermittency of the scalar derivative and the departure from Gaussian scalar 
p.d.f. increase with increasing Sc (Kerr 1985; McMurtry et al. 1993~). To explain the 
behaviour here, it is important to realize that in the absence of molecular diffusion the 
p.d.f. would not experience any changes. Therefore, as the magnitude of the molecular 
diffusion coefficient is increased, i.e. as Sc  is decreased, the influence of molecular 
action on the p.d.f. becomes more pronounced. This influence is more noticeable 
when L, = 1. In this case, the length scale of the velocity field is smaller than the 
largest scale of the scalar field. This velocity field influences the small scalar scales 
significantly but does not have a pronounced effect on the large scalar scales. As 
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Sc decreases, the difference between mixing of small-scale and of large-scale scalars 
becomes more significant. This yields a more exponential p.d.f. as demonstrated by the 
deviation of the results in LEM-21 from those in LEM-3. However, as the magnitude 
of the velocity length scale increases, the relative influence of advection (on the small- 
and the large-scale scalars) is similar and the p.d.f. at long times is not significantly 
modified. This is demonstrated by the similarity of the results in LEM-6 and LEM-22. 

The results presented above can be better understood by considering the following 
physical scenario: consider two scalar blobs, one with a size smaller than the largest 
velocity eddy and the other blob larger than this eddy. As a result of advection, the 
small blob is almost immediately stirred by turbulence and follows the cascade down 
to small scales. The time scale of this process is the same as that of the turbulent 
diffusivity. In the same time period, the larger blob is only dispersed and ‘waits’ 
until its size becomes the same or smaller than that of the largest eddies. Then, it 
experiences a mixing similar to that felt by the smaller blob. Again, remember that 
molecular diffusion is only effective at small scales and the p.d.f. can only be changed 
with the presence of molecular diffusion. Therefore the p.d.f. corresponding to the 
small blob is now changed from an initial double delta to a mixed near-Gaussian 
form. The same would happen for the p.d.f. of the large blob but with a time lag. 
The weighted sum of the two statistics can behave in a variety of different forms 
depending on the weights of the two original blobs. At intermediate times, there will 
always be a combination of small and large scales as figure 8 does indicate strong 
non-Gaussian behaviour at intermediate times in all the cases. For the small blobs 
which are already stirred, molecular diffusion is more active and changes the p.d.f. 
more rapidly. During this change, the larger blobs wait until turbulence brings their 
sizes near to the active scales of molecular diffusion. Different statistics for different 
blobs imply, as indicated before, that the weighed sum of statistics exhibits stronger 
departure from Gaussian. Now if the size of the velocity eddy is larger than the largest 
of the scalar blobs, both blobs follow the turbulence cascade. During the time that 
molecular diffusion acts to change the p.d.f. from its double-delta form, the blobs are 
uniformly stirred by turbulence. Thus, the decrease of Sc would not have a significant 
influence on mixing at long times. In fact, if L, is large enough it may even have an 
opposite effect. That is, as Sc decreases, the molecular diffusion can damp the rate 
of kurtosis and superskewness growth. Therefore, it is concluded that the role of Sc 
is very sensitive to both the initial scalar scale distribution and the initial extent of 
mixing. Further numerical simulations with large Schmidt numbers are required for 
a more elaborate investigation of this issue. 

3. Direct numerical simulation 
The results of the LEM simulations provide the guideline in our further, and some- 

what more extensive, analysis of the problem via DNS. One of the early applications 
of DNS in the problem of turbulent scalar mixing and reaction is due to Hill (1979) 
and since then such simulations have provided a very useful and effective means 
of capturing some of the physical aspects of this complex phenomenon (Kerr 1983, 
1985, 1990; Givi & McMurtry 1988; Eswaran & Pope 1988; Leonard & Hill 1988, 
1991, 1992; McMurtry & Givi 1989; Metais & Lesieur 1992; Madnia, Frankel & Givi 
1992; Frankel, Madnia & Givi 1993; Miller et al. 1993, 1995; Frankel 1993); a recent 
review is available (Givi 1994). 

Our objective in the simulations conducted here is to analyse the statistical be- 
haviour of passive scalars in three-dimensional, solenoidal, homogeneous and isotropic 
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velocity fields. All simulations are performed within a triply periodic box flow by 
means of a spectral-collocation numerical scheme employing Fourier basis functions 
(Givi & Madnia 1993). The hydrodynamic field is initialized by a random three- 
dimensional fluctuating velocity with zero mean and with a specified spectral density 
function. A wide-band von Karman spectrum is imposed. The velocity field is then 
allowed to evolve according to the Navier-Stokes equations for more than 10 eddy 
turnover times to reach to a ‘self-similar’ condition. This is considered as the initial 
condition for the scalar mixing. Simulations are conducted with both ‘unforced’ and 
‘forced’ hydrodynamic fields. In the former, the turbulence field is decaying whereas 
in the latter a steady turbulence field is established. The forcing scheme requires the 
energy in the low wavenumbers to remain constant. In this way the magnitudes of 
the turbulent length and velocity scales, and thus the magnitude of the Reynolds 
number, remain approximately constant throughout the evolution. Further details 
can be found in Givi (1989). 

The transport of the scalar field is considered under two conditions: a zero mean 
scalar gradient and a constant (non-zero) mean scalar gradient.t In the former, the 
variance of the scalar field monotonically decreases as mixing proceeds; in the latter 
the mean scalar gradient forces the variance to reach an asymptotic value after a 
transient time. In this case, in order to maintain periodicity in all directions the scalar 
field w is decomposed into a mean and a fluctuating part as 

(8) w(x, t )  = d Y  + 44x3 t). 

Here 4 denotes the mean-subtracted scalar value and d is a constant denoting the 
magnitude of the mean scalar gradient. With this initialization the transport of the 
scalar fluctuation is governed by 

where V is the velocity field, v is the y-component of the velocity vector along which 
the scalar gradient is imposed, and gM is the molecular diffusion coefficient. This 
equation indicates that the mean scalar gradient acts like a ‘source’ term in the 4 
transport equation. It is the statistics of this field that are of importance. Moreover, 
when d # 0, the statistics of the normalized variable +/d are expected to be similar 
at long times. This was verified numerically. All the cases considered are listed in 
tables 2 and 3. The simulations are conducted with the following three initialization 
schemes. 

Scheme 1: The initial scalar field has a Gaussian p.d.f. and is specified in Fourier 
space. The amplitudes of the Fourier modes are selected based on a specified input 
energy spectrum. The weights of the real and the imaginary components of each 
Fourier mode are determined based on a random phase. With this, the initial scalar 
field adopts a Gaussian p.d.f. in the physical domain. The conditions in all the flows 
initialized in this manner are listed in table 2(a). Different forms of the initial scalar 
spectra are considered as indicated in the second column of table 2(a). In the cases 
with a double-hat spectrum, the parameter a is defined as 

Scheme 2: The initial scalar field yields an approximate double-delta p.d.f.. The 

t Hereinafter, a ‘constant’ mean scalar gradient implies a ‘non-zero’ gradient unless otherwise 
stated. 
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Case Initial scalar spectra d Turbulence Re2 S c  

(a) DNS-1 Gaussian Forced 58 0.5 
DNS-2 Gaussian Decaying 58 to 18 0.5 
DNS-3 Gaussian Forced 38 0.5 
DNS-4 Gaussian Decaying 38 to 13 0.5 
DNS-5 Top-hat, K ,  = 1 Forced 58 0.5 
DNS-6 Top-hat, K ,  = 5 Forced 58 0.5 
DNS-7 Double-hat, K,1 = 1, Ks2 = 5 ,  a = 0.2 Forced 58 0.5 
DNS-8 Double-hat, K,I = 1,Kn = 5,a = 1 Forced 58 0.5 

( b )  DNS-9 Top-hat, K ,  = 8 0 Forced 58 0.5 
DNS-10 Double-hat, K,, = 1, Ks2 = 8, a = 0.125 0 Forced 58 0.5 
DNS-11 Double-hat, K,I  = 1, K,z = 8, a = 1 0 Forced 58 0.5 
DNS-12 Double-hat, K,1 = 1, Ks2 = 8, a = 0.125 0 Both 58 to 18 0.5 
DNS-13 Double-hat, K,, = 1, Ks2 = 8, a = 1 0.2 Forced 58 0.5 
DNS-14 Top-hat, K ,  = 8 0.5 Forced 58 0.5 
DNS-15 Top-hat, K ,  = 1 0.5 Forced 58 0.5 

(c) DNS-16 Square wave 0 Forced 58 0.5 
DNS-17 Double square wave 0 Forced 58 0.5 
DNS-18 Double square wave 0 Forced 58 0.05 

TABLE 2. Conditions for 643 DNS. (a) Scheme 1 (with an initial Gaussian p.d.f.). Each of the simu- 
lations for DNS-1-DNS-4 are conducted under all of the following conditions: (I) K ,  = 8, d = 0, 
(11) K ,  = 4, d = 0, (111) K ,  = 1, d = 0, (IV) K ,  = 8, d = 0.5, (V) K ,  = 1, d = 0.5. In all the 
other simulations, d = 0. (b)  Scheme 2 (with an initial double-delta p.d.f.). In the case indicated 
‘both’ in column 4 the flow is forced until tD = 3. After this time, forcing is removed. (c) Scheme 3 
(scalar field initialized in the physical domain). 

scalar field is initialized in a more isotropic manner than that composed of square 
waves (Scheme 3). The procedure is essentially the same as that first proposed by 
Eswaran & Pope (1988). Again, the components of the Fourier scalar modes are 
specified by a random phase. These components are then transformed back into 
the physical space. The scalars with a negative amplitude are set to 4 = -1 and 
those with a positive value are set to 4 = +l. The numerical simulation of the field 
with this ‘exact’ double-delta distribution is not possible due to formation of very 
sharp gradients in the physical domain. This problem is overcome by transforming 
the scalar field into the Fourier domain and decreasing the relative weights at high 
wavenumbers. As a result, the physical values are no longer bounded by f l  (Eswaran 
& Pope 1988). This field is allowed to go through molecular diffusion to reduce the 
amplitude. In the simulations here the initial scalar values are bounded by kl.01. 
Table 2(b) provides the list of all the parameters employed in DNS of flows initiated 
by this scheme. 

Scheme 3: The scalar field is initialized in the physical domain in such a way as 
to yield a square wave in the y-direction (Givi & McMurtry 1988). The scalar slabs 
with 4 = k 1  values are similar to those shown in figure 1 for LEM-1. To avoid 
sharp gradients in DNS, the scalar slab interfaces are prescribed by an error function. 
The scalar values are constant in (x, z)-planes in each of the locations along the 
y-direction. The flow parameters for the simulations with this initialization are listed 
in table 2(c). 

The simulations of the cases listed in table 2 are conducted in a domain discretized 
by 643 Fourier-collocation points. In a few cases, listed in table 3, some simulations 
with 1283 collocation points are also conducted. In some of the cases, the simulations 
are repeated several (up to 10) times to ensure the reliability of the statistics; the 
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Case Scheme Initial scalar field d Turbulence ReA Sc  
BDNS-1 3 Double square wave 0 Forced 80 0.5 
BDNS-2 2 Double-hat, KS1 = 1,Ks2 = 8,cr = 0.125 0 Forced 80 0.5 
BDNS-3 1 Gaussian, K, = 8 0.5 Forced 80 0.5 

TABLE 3. Conditions for 12g3 DNS. For schemes 1 and 2 column 3 specifies the initial shapes of the 
spectral density function of the scalar. For scheme 3 column 3 specifies the initial scalar profile in 
the physical space. 
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FIGURE 9. Temporal variation of the scalar kurtosis generated by DNS-1. Forced turbulence, 
Re1 = 58, with an initial Gaussian spectrum and an initial Gaussian p.d.f. (Scheme 1): (I) 
K, = 8, d = 0, (11) K ,  = 4, d = 0, (111) K, = 1, d = 0, (IV) K ,  = 8, d = 0.5, (V) 
K ,  = 1, d = 0.5. 

trends portrayed by the statistics are shown to remain similar. The definition of the 
other variables listed in tables 2 and 3 is clear. These variables indicate the presence 
(d # 0), or the absence (d = 0) of the mean scalar gradient, the dynamics of the 
velocity field (forced, decaying, or both), and the magnitudes of the Reynolds number 
based on the Taylor length scale (Ren) and the molecular Schmidt number (Sc ) .  

DNS results 
The 'time' tD in the figures presented in this section denotes the time as normalized by 
the eddy turnover time of DNS. Since a variety of different conditions are considered, 
the magnitude of the eddy turnover time is not identical in all the simulations. In 
the cases with a decaying turbulence field, the initial eddy turnover time is used. It is 
important to indicate here that ZL is an order of magnitude larger than zD (McMurtry 
et al. 1993~).  In all of the cases described below, the field of velocity fluctuations 
exhibits a nearly Gaussian p.d.f.. The statistics of this field are not presented here; 
rather, the statistical behaviour of the scalar field is the subject of detailed discussions. 

First, the mixing evolution from an initial Gaussian state (Scheme 1)  is considered. 
As indicated in table 2(a), the difference between the cases is associated with the 
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FIGURE 10. Normalized p.d.f.s of the scalar field at several time levels generated by DNS-1. 

(a) case I: K, = 8, d = 0; (b )  case IV: K ,  = 8, d = 0.5. 

magnitudes of K ,  and d. Each of the simulations for an initial Gaussian spectrum 
(DNS-1-DNS-4) is conducted under all of the following conditions: (I) K ,  = 8, d = 
0; (11) K,  = 4, d = 0; (111) K ,  = 1, d = 0; (IV) K,  = 8, d = 0.5; (V) 
K, = 1, d = 0.5. In figure 9 the temporal evolution of the kurtosis for DNS- 
1, cases I-V is presented. To generalize the conclusions drawn from the scalars’ 
kurtosis profiles, the variations of higher-order moments, the profiles of the p.d.f.s, 
the ‘conditional expected dissipation’ of the scalars, and the correlation between the 
scalar and its dissipation (equation (4)) are monitored in all the simulations. These 
statistics are useful for a quantitative description of the departure from Gaussian, 
especially at the tails of the p.d.f. (Sinai & Yakhot 1989; Miller et al. 1993; Jaberi, 
Miller & Givi 1995). However, with the exception of the p.d.f.s and some of the higher 
moments in some of the cases, these profiles are not shown. The results in figure 9 
indicate that in I and I1 the p.d.f.s quickly develop exponential tails, whereas in IV 
and V they remain approximately Gaussian at all times. These are also observed in 
the p.d.f. profiles in figure 10 for cases I and IV. In 111, the scalar field starts with 
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FIGURE 11. Temporal variation of the parameter I generated by DNS-1. I :  K ,  = 8, d = 0, 111: 
K ,  = 1, d = 0, IV: K ,  = 8, d = 0.5. 

t D  

mostly large length scales. Thus, the statistics remain Gaussian for a long time. In the 
presence of a constant mean gradient, the kurtosis varies slightly (IV, V) regardless 
of initial conditions. As expected, after the initial transient time the statistics become 
identical in these two cases. The trends observed in the first three cases can be 
explained in view of the LEM results. The initial field in case I is mostly composed 
of small scalar scales; thus the behaviour is somewhat similar to that in LEM-18. 
That is, the second mechanism for non-Gaussian behaviour, as identified above is 
observed. In 111, the initial scalar field is dominated by large scales; thus the tendency 
for non-Gaussian behaviour is very weak for a long time. In case 11, the initial 
field is composed of both small and large scalar scales and yields a relatively strong 
non-Gaussian behaviour similar to that observed in LEM-8. 

A useful means of characterizing the influence of mixing is by band-pass filtering of 
the DNS data. Here, the whole band of the scalar spectrum in the range 0 < k < 30 
is divided into regions 0 c k d 3, 3 < k < 15, 3 < k d 30, and 15 < k < 30. At the 
ranges of the Reynolds numbers considered, the separation of scales in the physical 
domain cannot be represented by a Fourier band-pass cutoff. Nevertheless, we refer 
to these regions as those pertaining to large scales (LS), intermediate scales (IMS), 
retained scales (RS) and small scales (SS), respectively. The temporal variation of the 
‘percentage of the scalar energy’ is defined as 

where K d ,  K ,  indicate the lower and the upper cutoff wavenumbers, respectively, and 
the denominator on the right-hand-side denotes the scalar variance. The corresponding 
2’ values for some of the representative cases of DNS-1 are shown in figure 11. This 
figure indicates that in all the cases (some not shown for clarity) only a very small 
portion, typically less than 2%, of the total energy is associated with SS. In case I, 
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the magnitude of %” associated with LS increases and that of RS decreases, until 
the two become very close at to m 4. A similar trend is observed in I1 (not shown) 
but the initial difference between the LS and the RS values of %” are understandably 
less. Therefore, it takes a shorter time for the two 2T values to become equivalent. In 
111, the %” values for LS are significantly greater than those for RS at initial times. 
Therefore, the statistics are expected to be dictated primarily by LS. In IV, the initial 
evolution of 2T values is similar to those in I. However, within a very short time LS 
values become larger than those corresponding to RS. The results for V (not shown) 
are in accord with those here: at small times the profiles are similar to those in I11 and 
after tD m 2 they become almost identical to those in IV. A striking feature portrayed 
by these results is the independence of the results at long time from the variance 
ratios at the initial time. Figure 11 indicates that despite a noticeable difference in the 
initial allocation of variances pertaining to LS and RS, the long-time ratios of the 
variances are very close. In fact, with the two cases with a mean gradient the results 
are almost identical. The kurtosis values of the filtered data are presented in figure 12. 
Part (a) of this figure indicates that the p.d.f.s associated with LS are nearly Gaussian 
at all times in all the cases. The IMS-p.d.f.s (figure 12b) are flatter than Gaussian, but 
the departure from Gaussian is less when a mean gradient is imposed. In all the cases, 
the kurtosis values associated with SS are consistently high (figure 12c), indicating 
exponential p.d.f.s for SS. These results indicate that while non-Gaussian behaviour 
can be developed within the full and the intermediate scales, it is not an inherent 
property of large scales. This observation is very useful in our discussions below. 

Contrary to that of the scalar, the p.d.f. of scalar derivatives exhibits a somewhat 
similar behaviour in all the cases. In figure 13, results are presented of the p.d.f. of 
d$/dy where it is shown that in all the cases an intermittent behaviour is prevailed. 
Moreover, the statistics are expected to be different when a mean scalar gradient is 
imposed. The results in figure 13 show symmetric p.d.f.s for cases 1-111, but skewed 
p.d.f.s for IV and V. It has been established that a scalar field embedded in a 
locally isotropic velocity field may not be locally isotropic (Budwig, Tavoularis & 
Corrsin 1985; Thoroddsen & Van Atta 1992; Tong & Warhaft 1994). This is typically 
measured by the skewness of the scalar-fluctuation derivatives since, by reflectional 
symmetry they should all vanish if the scalar field is locally isotropic. The asymmetry 
of the p.d.f. in figure 13 is consistent with the experimental measurements (Van Atta 
& Antonia 1980; Tavoularis & Corrsin 1981a; Budwig et al. 1985; Thoroddsen & 
Van Atta 1992) and recent simulated results (Holzer & Siggia 1994; Pumir 1994; 
Miller et al. 1995). The mechanism responsible for the skewness is due to the mean 
scalar gradient, even though the velocity field is isotropic. The p.d.f.s of the scalar 
dissipation (not shown) exhibit departure from a log-normal distribution with a 
considerable skewness, consistent with the results of previous computational and 
experimental investigations (Eswaran & Pope 1988; Andrews & Shivamoggi 1990; 
Vincent & Meneguzzi 1991; Jayesh & Warhaft 1992; Miller et al. 1995). 

The temporal evolution of the scalar kurtosis in DNS-2 (for cases I-V) with an 
unforced hydrodynamic field is shown in figure 14. A comparison of this figure with 
figure 9 reveals the significance of forcing. In case I, a mild increase in the kurtosis 
suggests that a non-Gaussian p.d.f. for this case is due to the interaction of diffusion 
and advection at small scales which is weaker than that in the stationary field (DNS- 
1). In 11, the magnitude of the kurtosis increases (similar to that in DNS-l(II)), but 
the tendency to return toward the Gaussian state is very weak and the field retains 
its non-Gaussian state even at long times. The decay of turbulence energy is the 
primary factor in retaining the non-Gaussian p.d.f.. Again, in the presence of the 
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FIGURE 13. Normalized p.d.f.s of the scalar derivatives in the y-direction in DNS-1 at t D  = 3. 
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FIGURE 14. Temporal variation of the scalar kurtosis generated by DNS-2. Decaying turbulence, 
Rel = 58 to 18, with an initial Gaussian spectrum and an initial Gaussian p.d.f. (Scheme I): 
(I)  K,  = 8, d = 0, (11) K ,  = 4, d = 0, (111) K ,  = 1, d = 0, (IV) K ,  = 8, d = 0.5, (V) 
K ,  = 1, d = 0.5. 

mean gradient (cases IV and V) the statistics at long times are similar. However, it 
is noted that the extent of similarity is not the same as that in cases IV and V of 
DNS-1. This implies that in a decaying field with a mean scalar gradient, the effect 
of initial conditions can be more preserved than in a stationary field. This behaviour 
was consistently observed in all our other simulations and is useful in interpreting 
some of the experimental results, as will be discussed in the next section. The p.d.f.s 
of the y-derivative of the scalar (not shown) portray a trend similar to that in figure 
13 indicating that skewed p.d.f.s are also formed in decaying (lower Re) flows. 
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FIGURE 15. As figure 14 but generated by DNS-3. Forced turbulence, Re2 = 38. 
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FIGURE 16. As figure 14 but generated by DNS-4. Decaying turbulence, Re2 = 38 to 13. 
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A decrease in the magnitude of the Reynolds number is expected to yield a milder 
non-Gaussian behaviour. This is shown in figure 15 where results are presented for 
DNS-3. The Reynolds number in all the cases in DNS-3 is smaller than those in 
DNS-1. A comparison of this figure with figure 9 indicates that the initial growth 
rate of the scalar kurtosis is less when the Reynolds number is decreased. In case I, 
after a mild increase during four eddy turnover times, the kurtosis increases abruptly 
and then relaxes toward the Gaussian value. Again, in all the cases with the mean 
scalar gradient (cases IV and V) the scalar field remains Gaussian at all times. The 
influence of hydrodynamic forcing is more dominant at this lower Reynolds number, 
as the results for DNS-4 in figure 16 show that with a decaying turbulence field, no 
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significant change is observed from the initial Gaussian scalar field (compare with 
figures 14 and 15). 

Based on the results presented for DNS-1-DNS-4 it can be concluded that at 
moderate Reynolds numbers, the statistics of the scalar field with a zero mean scalar 
gradient are strongly dependent on the initial conditions. In the presence of a steady 
(forced) advection field, the scalar p.d.f. can change from an initial Gaussian to 
a highly non-Gaussian distribution depending on the initial weights of small- and 
large-scale scalars. If the turbulence field is allowed to decay, once a non-Gaussian 
p.d.f. develops it lasts longer. As the magnitude of the Reynolds number decreases it 
is still possible to develop non-Gaussian p.d.f.s although at a much later time. Now 
if, in addition, the turbulence field is allowed to decay, departure from the Gaussian 
state is further delayed (in our case it is never developed). 

To further examine the effects of the initial scalar length scale distribution on the 
long-time statistics, the results for DNS-5-DNS-8 are considered in figure 17. In 
DNS-5 and DNS-6, the scalar field is initialized with a Gaussian scalar p.d.f. and 
a top-hat energy spectrum. The results for these two cases indicate that, in accord 
with the LEM results (LEM-9, LEM-18), by increasing the magnitude of K ,  the 
kurtosis adopts higher values at intermediate times. By adding a small amount of 
energy at large scales the non-Gaussian behaviour can be significantly enhanced. This 
is witnessed in DNS-7 in which the initial field is similar to DNS-6 (with Ks2 = 5) 
but with a relatively small energy (a = 0.2) at Ksl = 1. In this case, the exponential 
behaviour is preserved throughout mixing. However, for large a values, e.g. DNS-8 in 
which the energy is distributed equally between wavenumbers 5 and 1, the growth of 
the kurtosis is significantly damped. In this case, the field is dominated by large scales 
and does not allow exponential p.d.f.s. The results for a case with K,] = 1, Ks2 = 8 
show a similar behaviour, and thus are not shown. These observations are in accord 
with our earlier findings based on the LEM in that the presence of initial multi-length 
scalar scales results in departure from Gaussian if the initial energy is distributed 
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(Ks = 8), DNS-10 (Ks1 = 1, Ks2 = 8, CI = 0.125), DNS-11 (Ksj = 1, Ks;? = 8, CI = l), DNS-12 

‘appropriately’ and the field is not dominated by large scales. By ‘appropriate’ it is 
meant that there is some energy at large scalar scales, but its magnitude is smaller 
than that at other scales. It is not at present possible to predict a priori the response 
to a specific CI value in the range specified without conducting DNS. 

The results for the cases with an initial double-delta p.d.f. (Scheme 2) are discussed 
next. The evolution of the kurtosis in DNS-9-DNS-12 is shown in figure 18. This 
figure shows that in contrast to the case with an initial Gaussian p.d.f., when the 
magnitude of energy in the small scales is relatively large (DNS-9), the kurtosis at 
long times is not significantly larger than 3. This suggests that starting from an 
unmixed scalar field, the increase of small scales does not necessarily yield non- 
Gaussian behaviour. By increasing energy by 12.5% at large scales (DNS-10) the 
kurtosis grows significantly and the p.d.f. develops exponential tails. However, at 
tD w 4.5 the kurtosis starts to decrease rapidly and adopts a near-Gaussian value 
at long times. The reason for this return to the Gaussian state is that in this case 
the dominant scalar length scale is comparable to the hydrodynamic length scale. 
So, the exponential nature of the p.d.f. is rapidly destroyed by the stirring process 
(similar to LEM-6). This is further assessed in DNS-12. The initialization in this 
case is similar to that in DNS-10, but at t~ = 3 the forcing of the hydrodynamic 
field is removed. In this case, interestingly, the kurtosis decays very slowly and the 
exponential nature of the p.d.f. is preserved for a longer time. As before, by increasing 
the energy at large scales (DNS-11) the growth of the kurtosis is damped and the 
p.d.f. remains close to Gaussian. A comparison of the results for cases DNS-10 and 
DNS-12 suggests that once an exponential p.d.f. is established it has less tendency 
to relax when the turbulent field is decaying. The difference between DNS-10 and 
DNS-12 can be roughly related to the difference in the magnitudes of the eddy 
turnover times due to the difference in the advection fields in the two simulations. 
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To show this, the time for DNS-12 is normalized by an ‘effective’ eddy turnover time 
which is the average of this time during the simulation after forcing is removed. The 
kurtosis results with the time axis scaled in this way are identified by DNS-12N in 
figure 18. Within the time duration of the simulation, the trend in kurtosis values in 
DNS-12N is close to that in DNS-10. However, the values are not identical. This is 
expected as the average of the eddy turnover time, as evaluated here, is not capable 
of reflecting the effects of the modified advection field. Nevertheless, all these results 
confirm that exponential p.d.f.s can be developed by adding an appropriate amount 
of large scales to the initial scalar field. It must be pointed out that the departure 
from Gaussian is not the explicit character of large scales. In figure 19 the p.d.f.s 
of filtered data are presented for cases DNS-9-DNS-11. Figure 19(a) indicates that 
the large scales, although somewhat asymmetric, are close to Gaussian. The IMS 
statistics, figure 19(b), do show long-tailed p.d.f.s with a small degree of asymmetry 
due to the distribution of the initial energy. The p.d.f.s for the scalar field in S S  are 
similar and exponential in all the cases (figure 19c). 

The variations of the kurtosis and the skewness values for DNS-13 are compared 
with those of DNS-11 in figure 20(a). In DNS-13 the initial scalar field, similar to 
DNS-11, is composed of a double-delta p.d.f. with significant energy at large scales. 
The results indicate that until to w 12, the statistics remain Gaussian in both cases. 
After this time, the kurtosis rises sharply in the case without a mean gradient (DNS- 
l l ) ,  but there are no significant changes in the case with a mean gradient (DNS-13). 
The non-Gaussian behaviour in DNS-11 is the consequence of the presence of large 
initial scalar scales. It must be noted that this presence also results in skewed p.d.f.s 
in the simulations with a limited number of low-wavenumber modes. For the cases 
considered here, this is shown in figure 20(a) which in fact suggests large skewness 
values for DNS-11. Of course, if the calculations are repeated several times and 
statistics are gathered with a large number of realizations, the skewness would vanish 
but the kurtosis would not. However, the large scales do not cause skewed IMS 
p.d.f.s even those with flat-tail p.d.f.s., This is observed in figure 20(b) which shows 
that in DNS-11 and DNS-13 the p.d.f.s are fairly symmetric. Also, it is important 
to indicate that the behaviour shown in figure 20(a) for DNS-11 is not due to a 
numerical resolution problem. The normalized spectral density functions of the scalar 
(E4)  and its dissipation (D+), shown in figure 20(c), are very similar in the two cases 
and are also similar to the corresponding spectra of the velocity field. The behaviour 
portrayed by DNS-11 and DNS-13 are also observed in two additional simulations 
(not shown here) in which the initial spectral density function obeys a power law of 
the form kP3. For the case with d = 0, the behaviour is similar to that in DNS-11, 
but with a negative skewness at long times. The results for d = 0.2 are identical to 
those in DNS-13. All these results indicate that the presence of large scales is a strong 
source of non-Gaussian behaviour. This observation is very useful in interpreting 
some of the experimental results as discussed in the next section. 

The non-Gaussian behaviour just described is not observed in the presence of a 
mean scalar gradient with the Scheme 2 initialization. The reason is that with such a 

FIGURE 20. (a )  Temporal variation of the DNS-generated scalar skewness and kurtosis. (b)  p.d.f.s 
of the IMS (3 < K < 15) bandpass-filtered scalar at to = 15.92. (c) The spectral density functions 
at to = 15.92 of the velocity field E,(K),  the scalar field E&), the dissipation of the velocity field 
D,(K)  and the dissipation spectra of the scalar field D&). Forced turbulence, Re2 = 58. The scalar 
field is initialized via Scheme 2 with an initial double-delta p.d.f. and with a double-hat spectrum, 
Ks1 = 1, Ks2 = 8, tl = 1. DNS-11 (a = 0), DNS-13 (d = 0.2). 
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gradient, the long-time statistics are fairly independent of initial conditions and also 
independent of the amplitude of the scalar gradient. This is demonstrated by the results 
for DNS-13-DNS-15 in which both the initial scalar conditions and the magnitude 
of d are varied. The results are given in figure 21(a) for the superskewness evolution 
and in figure 21(b) for the p.d.f.s of the scalar dissipation ( x )  at tD = 12. These figures 
demonstrate that the behaviour at long times is similar in all these cases (the spectral 
density functions are also similar, but are not shown). Of course, the independence 
from the initial conditions would be less pronounced in a decaying turbulence field. 

In comparing the results generated by DNS with those via LEM one should keep 
in mind that the ratio of the length scale of the velocity to that of the scalar is 
an important parameter in the characterization of mixing. In DNS, these scales are 
limited by the computational domain (box size) at the upper bound. The same is 
also true in LEM but the scales can be imposed more independently of each other 
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and with a higher degree of freedom in specifying the ranges. Here, it is shown that 
with the initialization of the scalar field in the form of square waves, trends similar 
to those depicted by LEM are observed. The simulations for Sc = 0.5 are labelled 
DNS-16 and DNS-17. For the former, a single square scalar wave (in the y-direction) 
is imposed. For the latter, a double square wave is imposed. Note that while the initial 
scalar profile in the y-direction is similar to that in the LEM initialization (figure l), 
the initial scalar fieIds are not identical owing to the three-dimensionality of the DNS. 
The results in figure 22 show that after an initial transient time, the kurtosis remains 
close to 3 in DNS-16. But it increases in DNS-17 with a higher rate toward a larger 
value before decreasing to the near-Gaussian value at long times. This behaviour is 
similar to that observed in LEM-3; however, here the departure from Gaussian is not 
very significant since the dominant scale of the velocity is of the same order as that 
of the scalar (LEM-6). 

The influence of the Schmidt number on the scalar p.d.f. is difficult to determine 
by DNS, as only a limited range of this parameter can be considered by direct 
simulations. However, some features are captured by a limited number of simulations 
and are discussed here. In DNS-18, the same initialization as DNS-17 is employed 
but with Sc  = 0.05. The results in figure 22 indicate that by decreasing Sc  the kurtosis 
grows faster initially, but then decreases and relaxes to a value less than 3. In these 
cases, the dominant scale of the velocity is of the same magnitude as that of the scalar. 
Thus the effect of Sc should be, and is, the same as that presented in figure 8 showing 
the difference between cases LEM-6 and LEM-22. Further extensive simulations with 
broader ranges of the length scales and the Schmidt number are required to generalize 
the influence of Sc on the scalar p.d.f. which (as shown in both the LEM and the DNS 
results) can be very complex. However, it seems that the effect of Sc on the scalar 
spatial-derivatives is somewhat less complex. In all the cases considered here it was 
observed that as S c  decreases, the intermittency of the scalar derivatives is less pro- 
nounced. This observation is consistent with previously established results (Kerr 1985). 
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FIGURE 2 Temporal variation of the DNS-generated scalar kurtosis. Forced turbu.-nce, Rel = 80. 
BDNS-1 (Scheme 3: double square wave, d = 0), BDNS-2 (Scheme 2: double-hat spectrum, 
K,, = 1, Ks2 = 8, CI = 0.125, d = 0), BDNS-3 (Scheme 1: Gaussian, K ,  = 8, d = 0.5). 

An important characteristic displayed in DNS results is the lack of an exponential 
p.d.f. in all the simulations with an imposed mean scalar gradient. This is consistent 
with the analysis of Kimura & Kraichnan (1993), but is not in accord with that 
suggested by Pumir et al. (1991), Jayesh & Warhaft (1992) and Holzer & Siggia 
(1994). To confirm this finding, and also to study mixing at larger Reynolds numbers 
here a few additional simulations are performed with a higher resolution (1283 
collocation points). The conditions for these simulations are listed in table 3. Cases 
BDNS-1, BDNY-2, and BDNS-3 are initialized in a manner similar to DNS-17, DNS- 
10 and DNS-l(IV), spectively, but with a larger magnitude of the Reynolds number. 
Figure 23 indicates that the behaviour of BDNS-1 is similar to that of DNS-17, but 
with less deviation from Gaussian at long times. This is expected since in these two 
cases (DNS-17, BDNS-1) the largest scales of the scalar and the velocity fields are 
nearly equal and the initial scalar field is composed of two large slabs. The increase 
in Re provides a better stirring of the unmixed initial scalar field. Thus the p.d.f. at 
long times would be closer to Gaussian. The evolution of the kurtosis for BDNS-2 
does not exhibit the same trend since the long-time p.d.f. is exponential. In this case, 
the separation of iiiitial scalar length scales is more clearly established and the large 
scales have a smaller weight. As indicated before, the presence of rare large scales 
(small CI values) in the initial field is sufficient to cause non-Gaussian behaviour as 
shown here by large values of the kurtosis in BDNS-2. The results in BDNS-3 are 
nearly identical to those in DNS-1(IV, V) in which the kurtosis values remain near 
3. This indicates that in the presence of a constant mean gradient, the p.d.f. remains 
close to Gaussian regardless of the value of the Reynolds number. It is useful to note 
that the magnitude of the Reynolds number based on the integral length scale (Re[)  
here is twice the critical Re above which Jayesh & Warhaft (1992) suggest exponential 
p.d.f.s should prevail. 

Finally, some of the present results are compared with available experimental data. 
A quantitative comparison is made here; further qualitative comparisons are made 
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Variable 

((g)/( ( : )2 )  

(($)/( (32)3’2 
( (2)4)/( (2)2)2 

DNS-3(IV) TW94 TV92 BTC85 

-0.09 

1.67 

7.32 

9.21 

-0.009 
-0.586 
-0.101 
-2.398 

6.583 
11.61 

<0.1 small small 

1.8 1.2 1.4 

8.5 - - 

10.0 - - 

small small small 
-0.7 -0.68 -0.65 

- -2.1 - 

- 11.0 - 

- - - 

- - - 

TABLE 4. Comparison between the present simulated results and experimental measurements for 
some of the variables for cases with a constant mean scalar gradient. In the experiments, Re;. x 40. 
TW94, TVA92 and BTC85 correspond to Tong & Warhaft (1994), Thoroddsen & Van Atta (1992) 
and Budwig et al. (1985), respectively. 

in the next section. The experimental data considered are those provided by Budwig 
et a1. (1985), Thoroddsen & Van Atta (1992) and Tong & Warhaft (1994). It must be 
indicated, however, that not all the conditions and the measured results are identical 
in these experiments. Moreover, some of the measured statistics are not invariable 
in each experiment and they are subject to change depending on the location of the 
measurements. In analysing the simulated results using such experiments, at least in 
the context considered here, it is more appropriate to make qualitative comparisons 
as done in the next section. Nevertheless, it is useful to examine the trends established 
numerically in the light of the laboratory data. 

All our results indicate that intermittency of the scalar derivative in the .\-direction 
(perpendicular to the direction of the mean scalar gradient) is enhanced as the 
Reynolds number increases. The same is true for the derivative in the y-direction 
(parallel to the mean gradient direction), but with higher skewness magnitudes. At 
the range considered the skewness does not seem to be noticeably dependent on Re. 
These results are consistent with recent results based on the experiments of Tong & 
Warhaft (1994) and the numerical results of Pumir (1994). Also, the simulated p.d.f.s 
of the velocity-scalar fluctuations (uq5 and uq5) are exponential with relatively high 
skewness values for u4 .  This is in accord with the experiments of Thoroddsen & Van 
Atta (1992). Table 4 provides a quantitative comparison between all the simulated and 
laboratory results. For this comparison, DNS-3(IV) is considered since in this case a 
mean scalar gradient is imposed in accord with the experiments, and the Reynolds 
number is close to that in the experiments of Thoroddsen & Van Atta (1992) and 
Tong & Warhaft (1994). The statistics in this table are generated via time averaging 
over several realizations, in addition to space averaging. This is justifiable since in the 
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presence of the mean scalar gradient, the field can be assumed quasi-stationary (or in 
a sense ergodic) at long times. 

In accord with the experimental measurements, the numerical results show negligible 
skewness values for the scalar derivative and the scalar flux in the x-direction, but 
indicate significant skewness values for the y-derivative and the scalar flux in the 
y-direction. The simulated skewness and kurtosis values of the scalar gradients are 
close to those in the experiments of Tong & Warhaft (1994). With inclusion of data 
for BDNS-3 (with Re:, = 80) for the y-derivative skewness (1.59) and kurtosis (10.82), 
the numerical results indicate a relative independence of the skewness and Rel ,  and 
a scaling of for the kurtosis. These scalings are in accord with those suggested 
by Tong & Warhaft (1994). The experimental values for the mean flux (04) are 
underestimated by DNS, but the simulated values of the skewness and the kurtosis 
of this flux compare well with the measurements (Thoroddsen & Van Atta 1992). 

4. Further discussion 
In the light of the numerical results generated, here an interpretation is provided 

of some of the features observed in recent laboratory and numerical experiments on 
scalar mixing in turbulent flows. 

In the mixing experiments of Gollub et al. (1991) and Lane et al. (1993) of a flow 
between heated walls, the transition from a Gaussian to an exponential scalar p.d.f. 
is accompanied by a sharp increase in the effective diffusivity and a decrease in the 
magnitude of the mean scalar gradient within a region far from the boundary layers. 
Most of the temperature drop occurs in the boundary layer, and the interior mean 
temperature varies linearly from one side to the other. However, the magnitude of 
the mean temperature gradient in the interior regions varies nonlinearly with the 
Reynolds number. The steep decline of the magnitude of the mean gradient near 
the critical Re implies a substantial increase in the bulk thermal transport over a 
relatively narrow region near the wall. The sharp growth of the skewness of scalar 
fluctuations for Reynolds numbers greater than a critical value is also an important 
characteristic of this experiment. This skewness is preserved even when considering a 
large sample size and is not a consequence of limited statistical data or measurement 
errors. Lane et al. (1993) explain that the skewness may be generated by a weak 
large-scale flow drift which might be caused by flow instabilities at high Re. They 
also indicate that by increasing the correlation length scale of the velocity from 0.48 
to 1.7 cm the scalar p.d.f. remains Gaussian even up to Re = 8000. The critical Re 
above which sudden changes occur in the bulk properties in this case is 1000. In 
several aspects, these results are in accord with our findings. Before the transition Re 
the statistics are mostly determined by the mean gradient. The unmixed large-scale 
plumes within the boundary layer are stable and do not mix with interior fluids. 
This means that the statistics are dictated by the interior linear (approximately) 
mean scalar profile where the fluids are well mixed. Therefore, the p.d.f. remains 
approximately Gaussian, As Re increases to its critical value, the large scales at the 
boundary become unstable and are engulfed within the interior regions of the flow. 
These are still large-scale structures and their combination with the mixed interior 
fluid results in skewed p.d.f.s with broad tails. This behaviour is observed in our 
LEM (cases LEM-3, LEM-8, LEM-14) and DNS (cases DNS-10, DNS-11, BDNS-2) 
results. The instability of large scales facilitates the transport of the energy-containing 
scales at the boundary into the interior region, resulting in the increase of the heat 
flux and the effective diffusivity. At the same time, the fluid within the interior region 
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is more vigorously mixed yielding a low value of the local mean scalar gradient. The 
fluid in this region is continuously fed by rare large scales, and the unmixed thermal 
plumes are convected from boundary flows and are stirred by the interior flow. If 
the feeding by the large scales is continuous, as it is in the experiments, the p.d.f. 
remains exponential. If there is no influx of large scales, then mixing is transient 
and a Gaussian p.d.f. is eventually observed. These observations are in accord with 
our simulations as we show that the presence of rare large scales yields exponential 
p.d.f.s. However, a linear mean scalar profile is not responsible for this behaviour as 
in all our simulations pertaining to this issue the magnitude of the mean gradient 
is zero. Note that the significant portion of the temperature difference occurs near 
the walls and a substantial amount of heat transfer is due to the bulk motion of 
the fluid. One cannot expect to have significant ‘unmixed’ regions with exponential 
p.d.f.s, and at the same time expect an increase in the heat transfer and the thermal 
diffusivity. Therefore, it may not necessarily be the mean scalar gradient that is 
causing non-Gaussian intermittency, but it is the bulk fluid motion which introduces 
the large-scale boundary fluids into the central region. Of course the quantitative 
outcome depends on the magnitudes of the length scales, Re and Sc, and also the 
geometry of the flow configuration. 

In the experiments of Gollub et al. (1991) and Lane et al. (1993) it is also shown 
that weak large scales can cause skewed p.d.f.s, the degree of which is enhanced 
as Re increases. This behaviour is more pronounced when the largest length scale 
of the velocity is smaller than that of the scalar, and disappears when the velocity 
length scale increases. Moreover, with an increase of the velocity scale from a size 
smaller than the scalar scale to one larger, the p.d.f. changes from exponential to 
Gaussian. It has been suggested (Lane et al. 1993; Kimura & Kraichnan 1993) that 
this behaviour could be due to non-isotropy or non-homogeneity of the velocity field. 
This does not seem to be the case as the results of previous laboratory (Tavoularis 
& Corrsin 1981~) and numerical (Rogers, Moin & Reynolds 1986; Miller et al. 1995) 
experiments on non-isotropic shear flows show Gaussian scalar p.d.f.s even at large 
Reynolds numbers. In fact, the non-homogeneity in the experiments of Lane et al. 
(1993) is more significant when Re is less than the critical value, i.e. when the p.d.f. is 
Gaussian. In DNS-11 we show that by an increase of the initial scalar energy at low 
wavenumbers, the presence of large scales causes skewed p.d.f.s. But this is not due 
to the presence of the mean scalar gradient. This skewness is expected to vanish if a 
large number of realizations are considered. 

Notwithstanding the ‘active’ role of scalars, the behaviour discussed above is also 
observed in the convection experiments. In the Rayleigh-Bkrnard experiments of 
Solomon & Gollub (1991), the temperature p.d.f. is Gaussian or exponential if the 
Rayleigh number is below or above the transition value (Rat).  For Ra < Ra,, the 
presence of thermal plumes is detected. These plumes remain attached to the wall 
from which they erupt, but span the layer all the way to the opposite wall without 
breaking. In the more energetic state, when Ra > Rat the plumes are broken apart by 
turbulence resulting in a flow dominated by disconnected and freely convecting fluid 
blobs (thermals). In the ‘soft turbulence’ regime (Ra < Rat), the influence of thermal 
plumes on the temperature p.d.f. is negligible. They only contribute to the mean 
transport across the cell and do not significantly affect the temperature fluctuations. 
In the hard turbulence regime (Ra > Rat),  the breaking of large scales contributes 
to the scalar fluctuations throughout the cell including the central mixing core. In 
this regime, Zocchi, Moses & Libchaber (1991) indicate that most of the temperature 
drop occurs near the boundary plates and the bulk of the interior fluid is at constant 
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temperature. The experiments of the Chicago group indicate a Gaussian p.d.f. in the 
soft turbulence regime and an exponential p.d.f. in the hard turbulence regime. Our 
results, however, imply that it is not only the magnitude of Rat that determines the 
p.d.f.; the influence of the thermal plumes is also important and should be considered. 
In other words, hard-soft turbulence regions may not necessarily be associated with 
exponential-Gaussian p.d.f.s. Rather, it is the distribution of the scalar length scales 
and their relation to the velocity length scales that are important in determining 
the p.d.f.. Note that the size of the plumes and their eruption are controlled by the 
aspect ratio of the cell and the magnitude of Ra. As the plumes grow and break, they 
interact with the fluid within the core. In the core, therefore, the p.d.f. is governed 
by a weighted sum of the statistics of the incoming unmixed flow with that of the 
well-mixed original core fluid. As we show in DNS-10 and BDNS-2 this can cause 
non-Gaussian behaviour in accord with that observed experimentally. In this regard, 
our results are consistent with those obtained by Christie & Domaradzki (1993, 1994) 
as they indicate that at a fixed Ra, both Gaussian and exponential p.d.f.s can be 
generated by varying the cell aspect ratio. Our arguments are also in accord with 
Solomon & Gollub (1991) who indicate that the scalar p.d.f. is chiefly controlled by 
the coherency of thermal plumes. 

The stratified thermal convection experiments of Thoroddsen & Van Atta (1992) 
provide further evidence in support of our physical arguments. The inherent stability 
of the flow in this low-Re experiment is sufficient to keep the p.d.f. Gaussian, even 
with an imposed mean scalar gradient. Gaussian p.d.f.s are observed in all the cases 
considered in this experiment, consistent with all the results portrayed here for DNS- 
l(IV), DNS-13, BDNS-3. Further experiments at large Reynolds numbers would be 
very valuable in generalizing the conclusions drawn from these simulations. 

The experimental results of Jayesh & Warhaft (1992) on passive scalar mixing 
in decaying grid-generated turbulence indicate the presence of both Gaussian and 
exponential scalar p.d.f.s. They suggest that in the presence of a constant mean scalar 
gradient, after a complex initial evolution the p.d.f. adopts an exponential form if 
the Reynolds number based on the integral flow scale (Rel) is larger than a critical 
value (Re, = 70). In the absence of the mean gradient, the p.d.f. is skewed but 
approximately Gaussian. The results of earlier experiments of Tavoularis & Corrsin 
(1981a) in turbulent shear flows with a constant mean scalar gradient suggest Gaussian 
p.d.f.s even for Reynolds numbers much larger than Re, of Jayesh & Warhaft (1992). 
It seems unlikely that the non-isotropic nature of shear turbulence is responsible for 
the deviation from Gaussian as witnessed in the experiments of Lane et al. (1993) and 
the convection experiments of Heslot et al. (1987). In all the cases considered in our 
DNS of flows with a constant mean gradient, the p.d.f. is Gaussian regardless of the 
initial conditions and the magnitude of the Reynolds number. This is consistent with 
the experimental findings of Tavoularis & Corrsin (1981a), DNS results of Rogers, 
Mansour & Reynolds (1989) and recent analyses of Kimura & Kraichnan (1993), but 
not in accord with the numerical results of Holzer & Siggia (1994). We also show 
that once non-Gaussian statistics are formed they tend to exist longer in a decaying 
turbulent flow than in a forced stationary flow. This is especially true when there are 
large-scale scalar fluctuations that cannot be stirred by small-velocity eddies, even in 
the presence of a constant mean gradient. It appears that this condition is present in 
the experiments of Jayesh & Warhaft (1992). 

One notable difference between the experiments of Jayesh & Warhaft (1992) and 
Tavoularis & Corrsin (1981a) is the ratio of the length scales of the scalar to 
the velocity. In Jayesh & Warhaft (1992) for the case with a mean gradient this 
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ratio is greater than unity, but in Tavoularis & Corrsin (1981~)  it is smaller than 
unity. Thus our results in the cases with a mean scalar gradient are expected to be 
consistent with those of Tavoularis & Corrsin (1981b). The analysis of Kimura & 
Kraichnan (1993) shows that a nonlinear or a piecewise linear mean scalar profile 
can cause significant non-Gaussian behaviour. In our DNS, a perfectly linear mean 
scalar profile for the whole domain is imposed; therefore, the length scales of scalar 
fluctuations are determined by the forcing function due to the mean gradient in 
(9). This does not appear to be the case in the experiments since the mean scalar 
profile, even if perfectly linear, does not extend over the entire domain. Thus it is 
possible that the effect of initial (inlet) conditions are preserved in governing the 
consequent statistics. Furthermore, in the presence of the mean gradient in Jayesh 
& Warhaft’s (1992) experiments, the large scalar scales evaluated based on the peak 
of the scalar spectrum ( l o )  remain larger than the velocity integral scale along the 
tunnel. From the measured temperature spectrum it can be deduced that scalar scales 
up to 70 times larger than 1s are present. For example, it is shown that scalar scales 
larger than 71s contribute to 8% of the total scalar variance. In our simulations 
we show that this amount of large scales is sufficient to create siknificant departure 
from Gaussian especially when 1, < Is. Despite their contribution in developing 
exponential-tail p.d.f.s, these large scales do not necessarily portray non-Gaussian 
behaviour themselves. In fact, if these scales are filtered out, the p.d.f. of the retained 
field exhibits a strong exponential behaviour. This is observed in our results presented 
in figure 19(b). 

In the absence of the mean gradient, the reported results in Jayesh & Warhaft 
(1992) correspond to the case where the scalar length scale is smaller than that of 
the velocity. For this case, based on our LEM (cases LEM-6, LEM-10, LEM-16) and 
DNS (cases DNS-5, DNS-16) results, we expect the scalar p.d.f. to be near Gaussian. 
As indicated by Warhaft & Lumley (1978) in grid-generated turbulence experiments 
it is not clear how to change the thermal length scales (by grid heating) without 
affecting the velocity field. This is an important issue awaiting further investigations, 
especially by laboratory experiments. 

5. Concluding remarks 
The results of our numerical experiments reveal the intricate physics of scalar 

mixing and the complex role played by the combined influences of advection and 
molecular diffusion in turbulent flows. The primary observation made here is to verify 
that the long-time p.d.f. of a passive scalar in homogeneous turbulent flows is not 
necessarily Gaussian (or of any other particular form), and the fate of mixing is 
dependent on several factors. The objective of this work is to identify some of the 
causes for non-Gaussian behaviour of the scalar field and to determine the influence 
of several flow parameters in governing the scalar statistics. Aided by the analyses of 
the numerically generated data, an attempt is made to interpret the results provided 
in several recent laboratory experiments. With this interpretation, it is easy to see 
that there are many more possibilities (than those discussed here) for generating 
non-Gaussian p.d.f.s. However, there are several conclusions that can be drawn from 
the simulated results. These conclusions are itemized here, with the caveat that they 
are established in the range of parameters, resolution, and within the time durations 
considered in the present simulations: 

(i) Two mechanisms are identified for causing exponential p.d.f.s of the scalar 
amplitude due to the concurrent actions of advection and diffusion. (1) A non-uniform 
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action of advection on the large and the small scalar scales: for this, the dominant 
scale of advection should be smaller than that of the scalar and the weight of the 
large scalar scales should be ‘appropriately’ imposed. By ‘appropriate’ it is meant that 
there is some energy at large scalar scales, but its magnitude is smaller than that at 
other scales. (2) The nonlinear interaction of the scalar and the velocity fluctuations at 
small scales: in this case, the scalar tends to be correlated with the scalar gradient due 
to the smoothing effect of molecular diffusion on the scalar gradient. This correlation 
leads to a weak non-Gaussian behaviour and can be enhanced by increasing the 
weight of small scalar scales. 

(ii) Although the presence of an appropriate amount of large scalar scales is a 
source of non-Gaussian behaviour, the p.d.f.s of the large scales themselves are not 
necessarily exponential. 

(iii) In the absence of a mean scalar gradient, i.e. a decaying scalar field, the p.d.f. 
is very sensitive to the initial conditions. In the presence of this gradient, non-Gaussian 
behaviour is not sustained regardless of initial conditions. 

(iv) The statistical behaviour is different in a stationary turbulence field from that 
in a decaying field. Once non-Gaussian behaviour is developed, it has a tendency to 
survive for a longer time in a decaying field. 

(v) Contrary to its role in the scalar-derivative p.d.f.s, the Schmidt number 
exhibits a rather complex influence on the p.d.f.s of the scalar amplitude. In most 
of the cases considered, non-Gaussian behaviour becomes more pronounced as the 
magnitude of the Schmidt number is increased. However, an opposite behaviour can 
be observed under the first criterion (noted above). Further laboratory and numerical 
experiments with large Sc values are required to investigate this issue. 

(vi) It is suggested that the non-Gaussian behaviour observed in recent laboratory 
experiments on passive scalar mixing may not be necessarily due to the presence of 
a linear mean scalar profile. It is argued that the initial/boundary conditions, and/or 
the nonlinearity of the mean scalar profile could be the cause of this behaviour. 

(vii) It is suggested that the non-Gaussian behaviour observed in recent convection 
laboratory experiments may not be necessarily due the presence of a hard-turbulence 
regime. It is the dynamics of the thermal plumes that could be the cause. 

(viii) The simulated results pertaining to small-scale intermittency are in accord 
with laboratory experimental results. The DNS generated statistics of the scalar 
derivatives and the velocity-scalar fluctuations are also in agreement with laboratory 
measurements. 
A challenging next step would be the analysis of mixing for active scalars and/or 
chemically reactive flows (Libby & Williams 1994) in both homogeneous and non- 
homogeneous flows. 
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